Author Affiliations
Abstract
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
3 Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China
4 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, China
5 e-mail: qings@jlu.edu.cn
6 Institute for Lasers, Photonics, Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
Mid-infrared pulsed lasers operating around the 3?μm wavelength regime are important for a wide range of applications including sensing, spectroscopy, imaging, etc. Despite the recent advances in technology, the lack of a nonlinear optical modulator operating in the mid-infrared regime remains a significant challenge. Here, we report the third-order nonlinear optical response of gold nanorods (GNRs) ranging from 800?nm to the mid-infrared regime (2810?nm) enabled by their size and overlapping behavior-dependent longitudinal surface plasmon resonance. In addition, we demonstrate a wavelength-tunable Er3+-doped fluoride fiber laser modulated by GNRs, which can deliver pulsed laser output, with the pulse duration down to 533?ns, tunable wavelength ranging from 2760.2 to 2810.0?nm, and spectral 3?dB bandwidth of about 1?nm. The experimental results not only validate the GNRs’ robust mid-infrared nonlinear optical response, but also manifest their application potential in high-performance broadband optoelectronic devices.
Photonics Research
2019, 7(6): 06000699
Author Affiliations
Abstract
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 e-mail: yanhongzou@hnu.edu.cn
3 e-mail: cjzhao@hnu.edu.cn
Ultrafast fiber lasers are in great demand for various applications, such as optical communication, spectroscopy, biomedical diagnosis, and industrial fabrication. Here, we report the highly stable femtosecond pulse generation from a MXene mode-locked fiber laser. We have prepared the high-quality Ti3C2Tx nanosheets via the etching method, and characterized their ultrafast dynamics and broadband nonlinear optical responses. The obvious intensity- and wavelength-dependent nonlinear responses have been observed and investigated. In addition, a highly stable femtosecond fiber laser with signal-to-noise ratio up to 70.7 dB and central wavelength of 1567.3 nm has been delivered. The study may provide some valuable design guidelines for the development of ultrafast, broadband nonlinear optical modulators, and open new avenues toward advanced photonic devices based on MXenes.
Photonics Research
2019, 7(3): 03000260
Author Affiliations
Abstract
1 Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
2 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
3 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
We have prepared the graphene/MoS2 heterostructure by a hydrothermal method, and presented its nonlinear absorption parameters and application as a nonlinear optical modulator in the mid-infrared region. Using the nonlinear optical modulator, stable passively Q-switched operation of an Er3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber laser at 2.8 μm can be obtained. The Q-switched Er3+-doped ZBLAN fiber laser can yield per-pulse energy up to 2.2 μJ with the corresponding pulse width and pulse repetition rate of 1.9 μs and 45 kHz, respectively. Our results indicate that the graphene/MoS2 heterostructure can be a robust optical modulator for pulsed lasers in the mid-infrared spectral range.
160.4330 Nonlinear optical materials 140.3070 Infrared and far-infrared lasers 
Chinese Optics Letters
2018, 16(2): 020012
Author Affiliations
Abstract
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, IFSA Collaborative Innovation Center, School of Physics and Electronics, Hunan University, Changsha 410082, China
3 State Key Laboratory on Integrated Opto-electronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
Q-switched operation of an Nd:LuAG laser using gold nanorods (GNRs) as the saturable absorber (SA) is reported, which also produces the highest average power among the nanosecond Nd-doped Q-switched lasers by GNRs-based SA. The applied GNRs are prepared using a seed-mediated growth method and then dropped onto the quartz substrate to fabricate the SA. The average power of the Q-switched laser is 516 mW with the shortest pulse duration of 606.7 ns and the repetition rate of 265.1 kHz.
160.3380 Laser materials 140.3540 Lasers, Q-switched 160.4236 Nanomaterials 
Chinese Optics Letters
2018, 16(2): 020011
作者单位
摘要
湖南大学物理与微电子科学学院, 湖南 长沙 410082
通过光学自组装方法制备了碲化铋可饱和吸收器件, 并获得了该器件的非线性光学响应特性。将可饱和吸收体引入掺铒光纤激光器中, 在抽运功率为170 mW时, 获得中心波长为1564.94 nm, 脉冲宽度为2.91 μs的激光输出。通过外加连续光对非线性吸收器件进行调制, 实现了脉冲持续时间和重复频率可调控的调Q光纤激光输出。
激光器 被动调Q 拓扑绝缘体 碲化铋 全光控制 
中国激光
2017, 44(7): 0703014
Author Affiliations
Abstract
1 SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 Faculty of Information Technology, Macau University of Science and Technology, Macao
3 Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, College of Physics and Microelectronic Science, Hunan University, Changsha 410082, China
We experimentally investigated the nonlinear optical response in few-layer oxidized black phosphorus (OBP) by the femtosecond Z-scan measurement technique, and found that OBP not only possesses strong ultrafast saturable absorption but also a nonlinear self-defocusing effect that is absent in black phosphorus (BP). The saturable absorption property originates mainly from the direct band structure, which is still maintained in OBP. The emergence of self-defocusing might originate from the combined consequences of the oxygen-induced defects in BP. Our experimental findings might constitute the first experimental evidence on how to dynamically tuneits nonlinear property, offering an inroad in tailoring its optical properties through chemical modification (oxidation, introducing defects, etc.). The versatile ultrafast nonlinear optical properties (saturable absorption and self-defocusing) imply a significant potential of the layered OBP in the development of unprecedentedoptoelectronic devices, such as mode lockers, optical switches, laser beam shapers, and wavelength converters.China Postdoctoral Science Foundation (2015M580731); Science and Technology Planning Project of Guangdong Province (2016B050501005).
Nonlinear optics Nonlinear optics Optical devices Optical devices Ultrafast optics Ultrafast optics 
Photonics Research
2016, 4(6): 06000286
作者单位
摘要
湖南大学 物理与微电子科学学院 微纳光电器件及应用教育部重点实验室,长沙410082
为了验证饱和吸收体参量对被动锁模掺铥光纤激光器的输出特性的影响,基于耦合Ginzburg-Landau方程进行了数值研究,阐明了掺铥锁模光纤激光器在高调制深度饱和吸收体调制下的时域和频域特性。结果表明,优化选择的高调制深度可饱和吸收体可以有效缩短脉宽,减小时间带宽积。此研究结果对发展稳定、超快中红外超快激光具有指导意义。
激光器 被动锁模 数值模拟 饱和吸收体 lasers passively mode-locked numerical simulation saturable absorber 
激光技术
2016, 40(4): 571
作者单位
摘要
湖南大学物理与微电子科学学院, 微纳光电器件及应用教育部重点实验室, 湖南 长沙 410082
基于机械剥离方法,即通过胶带反复剥离高定向热解石墨,制备得到少层石墨烯,并将其作为可饱和吸收体实现了被动谐波锁模掺铒光纤激光器。在抽运功率约135 mW 时,获得了中心波长1568.3 nm,脉冲宽度1.82 ps,3 dB 带宽1.7 nm,重复频率1.646 MHz的基频锁模激光输出。通过增加抽运功率和调节腔内偏振,可以获得谐波锁模,谐波阶数最高达到基频的47 阶(77.36 MHz)。同时,研究了不同阶谐波锁模时,输出功率、脉冲宽度和单脉冲能量的变化。
激光器 超快光纤激光器 谐波锁模 石墨烯 机械剥离 
中国激光
2015, 42(8): 0802013
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education
2 and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
3 SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
We propose a low-threshold soliton fiber laser passively mode locked with two different types of film-like saturable absorbers, one of which is fabricated by mixing Bi2Te3 with de-ionized water, as well as polyvinyl alcohol (PVA), and then evaporating them in a Petri dish, and the other of which is prepared by directly dropping Bi2Te3 solution on the PVA film. Both Bi2Te3–PVA films exhibit outstanding features of low loss, high flexibility, and easy synthesis. By incorporating Bi2Te3–PVA films into fiber lasers, stable single-soliton emissions are obtained at a low pump power of 13 mW. Our results suggest that the Bi2Te3 can work as a promising mode locker for ultrafast lasers, while PVA is an excellent host for fabricating high-performance film-based saturable absorbers.
Mode-locked lasers Mode-locked lasers Lasers Lasers fiber fiber Nanomaterials Nanomaterials Ultrafast nonlinear optics Ultrafast nonlinear optics 
Photonics Research
2015, 3(2): 02000A43
Author Affiliations
Abstract
1 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics,Hunan University, Changsha 410082, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University,Shenzhen 518060, China
Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared (mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene (~10?7 cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics, potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.
Nonlinear optical materials Nonlinear optical materials Optical properties Optical properties Kerr effect Kerr effect 
Photonics Research
2015, 3(5): 05000214

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!